Success in the 3D Bioprinting of Cartilage

#1 von Markus , 01.05.2017 15:06

Jedem, der gerade über Gelenkimplantate aufgrund von "Knorperverschleiß" nachdenkt, würde ich dazu raten noch so lange wie möglich zu überbrücken. Zumindest bis diese Technik zugelassen ist: das Nachdrucken der extrazellulären Bindegewebematrix im 3D-Drucker und der anschließenden "Impfung" mit Knorpelstammzellen. Mit der Folge eines funktionalen, beinahe körperidentischen Gewebes, das das "alte" Gewebe vollständig ersetzen kann.


The team used cartilage cells harvested from patients who underwent knee surgery, and these cells were then manipulated in a laboratory, causing them to rejuvenate and revert into "pluripotent" stem cells, i.e. stem cells that have the potential to develop into many different types of cells. The stem cells were then expanded and encapsulated in a composition of nanofibrillated cellulose and printed into a structure using a 3D bioprinter. Following printing, the stem cells were treated with growth factors that caused them to differentiate correctly, so that they formed cartilage tissue.

Most of the team's efforts had to do with finding a procedure so that the cells survive printing, multiply and a protocol that works that causes the cells to differentiate to form cartilage. "We investigated various methods and combined different growth factors. Each individual stem cell is encased in nanocellulose, which allows it to survive the process of being printed into a 3D structure. We also harvested mediums from other cells that contain the signals that stem cells use to communicate with each other so called conditioned medium. In layman's terms, our theory is that we managed to trick the cells into thinking that they aren't alone." A key insight gained from the team's study is that it is necessary to use large amounts of live stem cells to form tissue in this manner.

The cartilage formed by the stem cells in the 3D bioprinted structure is extremely similar to human cartilage. Experienced surgeons who examined the artificial cartilage saw no difference when they compared the bioprinted tissue to real cartilage, and have stated that the material has properties similar to their patients' natural cartilage. Just like normal cartilage, the lab-grown material contains Type II collagen, and under the microscope the cells appear to be perfectly formed, with structures similar to those observed in samples of human-harvested cartilage.

"Who controls the past...controls the future; who controls the present controls the past.” And yet the past, though of its nature alterable, never had been altered. Whatever was true now was true from everlasting to everlasting. It was quite simple. All that was needed was an unending series of victories over your own memory. “Reality control,” they called it: in Newspeak, “doublethink.” “Doublethink is essentially a form of cognitive dissonance in which one holds contradictory ideas in their mind, and accepts both as reality. Doublethink is everywhere. Every human being compartmentalizes to some extent.” (Rob Knowles)

Beiträge: 2.717
Registriert am: 28.05.2014

RE: Success in the 3D Bioprinting of Cartilage

#2 von Wirbelwind , 01.05.2017 21:02

das macht Mut.
Danke für den Artikel.

"Das Wissen von heute ist der Irrtum von Morgen"

Beiträge: 261
Registriert am: 22.12.2014


Omega 3 zur Aufrechterhaltung der Blut-Hirn-Schranke
DHEA & Entzündungen / Autoimmunerkankungen

disconnected Foren-Chat Mitglieder Online 3
Xobor Einfach ein eigenes Forum erstellen