N-3PUFA differentially modulate palmitate-induced lipotoxicity through alterations of its metabolism in C2C12 muscle cells

#1 von MaXopA , 05.12.2015 14:33

Excessive energy intake leads to fat overload and the formation of lipotoxic compounds mainly derived from the saturated fatty acid palmitate (PAL), thus promoting insulin resistance (IR) in skeletal muscle. N-3 polyunsaturated fatty acids (n-3PUFA) may prevent lipotoxicity and IR.

The purpose of this study was to examine the differential effects of n-3PUFA on fatty acid metabolism and insulin sensitivity in muscle cells. C2C12 myotubes were treated with 500μM of PAL without or with 50μM of alpha-linolenic acid (ALA), eicosapentaenoic acid (EPA) or docosahexaenoic acid (DHA) for 16h. PAL decreased insulin-dependent AKT activation and glucose uptake and increased the synthesis of ceramides and diglycerides (DG) derivatives, leading to protein kinase Cθ activation. EPA and DHA, but not ALA, prevented PAL-decreased AKT activation but glucose uptake was restored to control values by all n-3PUFA vs. PAL. Total DG and ceramide contents were decreased by all n-3PUFA, but only EPA and DHA increased PAL β-oxidation, decreased PAL incorporation into DG and reduced protein kinase Cθ activation.

EPA and DHA emerge as better candidates than ALA to improve fatty acid metabolism in skeletal muscle cells, notably via their ability to increase mitochondrial β-oxidation.

Quelle: http://www.ncbi.nlm.nih.gov/pubmed/26477381


Beiträge: 309
Registriert am: 17.12.2014

zuletzt bearbeitet 05.12.2015 | Top


VCO prevents blood pressure elevation and improves endothelial functions in rats fed with repeatedly heated palm oil
Longer inter-set rest periods enhance muscle strength and hypertrophy in resistance-trained men.

disconnected Foren-Chat Mitglieder Online 4
Xobor Einfach ein eigenes Forum erstellen